Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.693
Filtrar
2.
Curr Top Dev Biol ; 157: 83-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556460

RESUMO

For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.


Assuntos
Encéfalo/embriologia , Face/embriologia , Camadas Germinativas , Mesoderma , Sistema Nervoso , Mesoderma/fisiologia , Morfogênese , Padronização Corporal
3.
J Mol Biol ; 436(7): 168454, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266980

RESUMO

Brain development requires appropriate regulation of serotonin (5-HT) signaling from distinct tissue sources across embryogenesis. At the maternal-fetal interface, the placenta is thought to be an important contributor of offspring brain 5-HT and is critical to overall fetal health. Yet, how placental 5-HT is acquired, and the mechanisms through which 5-HT influences placental functions, are not well understood. Recently, our group identified a novel epigenetic role for 5-HT, in which 5-HT can be added to histone proteins to regulate transcription, a process called H3 serotonylation. Here, we show that H3 serotonylation undergoes dynamic regulation during placental development, corresponding to gene expression changes that are known to influence key metabolic processes. Using transgenic mice, we demonstrate that placental H3 serotonylation is dependent on 5-HT uptake by the serotonin transporter (SERT/SLC6A4). SERT deletion robustly reduces enrichment of H3 serotonylation across the placental genome, and disrupts neurodevelopmental gene networks in early embryonic brain tissues. Thus, these findings suggest a novel role for H3 serotonylation in coordinating placental transcription at the intersection of maternal physiology and offspring brain development.


Assuntos
Encéfalo , Regulação da Expressão Gênica no Desenvolvimento , Histonas , Neurogênese , Placenta , Receptores de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Animais , Feminino , Camundongos , Gravidez , Histonas/metabolismo , Camundongos Transgênicos , Placenta/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transcriptoma , Encéfalo/embriologia , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Neurogênese/genética
4.
Nature ; 623(7985): 106-114, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880365

RESUMO

Maturation of the human fetal brain should follow precisely scheduled structural growth and folding of the cerebral cortex for optimal postnatal function1. We present a normative digital atlas of fetal brain maturation based on a prospective international cohort of healthy pregnant women2, selected using World Health Organization recommendations for growth standards3. Their fetuses were accurately dated in the first trimester, with satisfactory growth and neurodevelopment from early pregnancy to 2 years of age4,5. The atlas was produced using 1,059 optimal quality, three-dimensional ultrasound brain volumes from 899 of the fetuses and an automated analysis pipeline6-8. The atlas corresponds structurally to published magnetic resonance images9, but with finer anatomical details in deep grey matter. The between-study site variability represented less than 8.0% of the total variance of all brain measures, supporting pooling data from the eight study sites to produce patterns of normative maturation. We have thereby generated an average representation of each cerebral hemisphere between 14 and 31 weeks' gestation with quantification of intracranial volume variability and growth patterns. Emergent asymmetries were detectable from as early as 14 weeks, with peak asymmetries in regions associated with language development and functional lateralization between 20 and 26 weeks' gestation. These patterns were validated in 1,487 three-dimensional brain volumes from 1,295 different fetuses in the same cohort. We provide a unique spatiotemporal benchmark of fetal brain maturation from a large cohort with normative postnatal growth and neurodevelopment.


Assuntos
Encéfalo , Desenvolvimento Fetal , Feto , Pré-Escolar , Feminino , Humanos , Gravidez , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Feto/embriologia , Idade Gestacional , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/embriologia , Substância Cinzenta/crescimento & desenvolvimento , Voluntários Saudáveis , Internacionalidade , Imageamento por Ressonância Magnética , Tamanho do Órgão , Estudos Prospectivos , Organização Mundial da Saúde , Imageamento Tridimensional , Ultrassonografia
5.
Science ; 382(6667): eadf1226, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824650

RESUMO

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.


Assuntos
Encéfalo , Neurogênese , Primeiro Trimestre da Gravidez , Feminino , Humanos , Gravidez , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/embriologia , Neuroglia , Neurônios/citologia , Atlas como Assunto , Análise da Expressão Gênica de Célula Única
6.
Int J Dev Neurosci ; 83(8): 728-739, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37767888

RESUMO

INTRODUCTION: Preeclampsia is a hypertensive disorder of pregnancy. DLX5 plays an important role in the migration and differentiation of subglobus pallidus precursor cells. METHODS: We established a zebrafish line expressing high levels of DLX5 and investigated changes in behavior and development of the nervous system. RESULTS: The ratios of brain volume area to whole body area at 96 hpf zebrafish in the experimental group (gRNA + CasRx) were significantly lower than the WT group and the negative control group (casRx) (P < 0.01). Behavioral trajectory distances and movement speeds exhibited by the 6th day of development in zebrafish in the experimental group (gRNA + CasRx) were significantly shorter (P < 0.01) and lower (P < 0.05) than the negative control group (gRNA + CasRx), respectively. CONCLUSIONS: Data suggested that the increased expression levels of DLX5 can inhibit brain volume development and behavioral activities in zebrafish. Maybe the high expression levels of DLX5 in the pathological state of preeclampsia can inhibit the development of the nervous system in offspring.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Peixe-Zebra , Animais , Feminino , Humanos , Encéfalo/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Pré-Eclâmpsia , RNA Guia de Sistemas CRISPR-Cas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
7.
BMC Genomics ; 24(1): 351, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365500

RESUMO

BACKGROUND: The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development. RESULTS: Temporal analysis of eRNA transcription identified clusters of TEs that peak in activity during either embryonic or postnatal times, highlighting their importance for temporally specific developmental events. Functional analysis of putative target genes identified molecular mechanisms under TE regulation revealing that TEs regulate genes involved in biological processes specific to neurons. We validate enhancer activity using in situ hybridization of eRNA expression from TEs predicted to regulate Nfib, a gene critical for cerebellar granule cell differentiation. CONCLUSIONS: The results of this analysis provide a valuable dataset for the identification of cerebellar enhancers and provide insight into the molecular mechanisms critical for brain development under TE regulation. This dataset is shared with the community through an online resource ( https://goldowitzlab.shinyapps.io/trans-enh-app/ ).


Assuntos
Encéfalo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Análise de Sequência de RNA , Encéfalo/embriologia , Encéfalo/metabolismo , Animais , Camundongos , Elementos Facilitadores Genéticos , RNA/genética
8.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130781

RESUMO

In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-ß aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.


Assuntos
Encéfalo , Peptídeos e Proteínas de Sinalização Intracelular , Placa Amiloide , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Desenvolvimento Embrionário/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Knockout , Placa Amiloide/metabolismo
9.
Nature ; 616(7955): 113-122, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922587

RESUMO

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Assuntos
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animais , Humanos , Camundongos , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análise de Célula Única , Especificidade de Órgãos , Encéfalo/embriologia , Encéfalo/metabolismo , Envelhecimento/genética
10.
Am J Med Genet B Neuropsychiatr Genet ; 192(3-4): 62-70, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863698

RESUMO

Investigating functional, temporal, and cell-type expression features of mutations is important for understanding a complex disease. Here, we collected and analyzed common variants and de novo mutations (DNMs) in schizophrenia (SCZ). We collected 2,636 missense and loss-of-function (LoF) DNMs in 2,263 genes across 3,477 SCZ patients (SCZ-DNMs). We curated three gene lists: (a) SCZ-neuroGenes (159 genes), which are intolerant to LoF and missense DNMs and are neurologically important, (b) SCZ-moduleGenes (52 genes), which were derived from network analyses of SCZ-DNMs, and (c) SCZ-commonGenes (120 genes) from a recent GWAS as reference. To compare temporal gene expression, we used the BrainSpan dataset. We defined a fetal effect score (FES) to quantify the involvement of each gene in prenatal brain development. We further employed the specificity indexes (SIs) to evaluate cell-type expression specificity from single-cell expression data in cerebral cortices of humans and mice. Compared with SCZ-commonGenes, SCZ-neuroGenes and SCZ-moduleGenes were highly expressed in the prenatal stage, had higher FESs, and had higher SIs in fetal replicating cells and undifferentiated cell types. Our results suggested that gene expression patterns in specific cell types in early fetal stages might have impacts on the risk of SCZ during adulthood.


Assuntos
Encéfalo , Mutação , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Animais , Camundongos , Feto/citologia , Feto/embriologia , Neurônios/metabolismo , Mutação com Perda de Função , Mutação de Sentido Incorreto , Humanos , Especificidade de Órgãos
11.
Proc Natl Acad Sci U S A ; 119(37): e2208465119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067310

RESUMO

Gene expression is tightly regulated by RNA-binding proteins (RBPs) to facilitate cell survival, differentiation, and migration. Previous reports have shown the importance of the Insulin-like Growth Factor II mRNA-Binding Protein (IGF2BP1/IMP1/ZBP1) in regulating RNA fate, including localization, transport, and translation. Here, we generated and characterized a knockout mouse to study RBP regulation. We report that IGF2BP1 is essential for proper brain development and neonatal survival. Specifically, these mice display disorganization in the developing neocortex, and further investigation revealed a loss of cortical marginal cell density at E17.5. We also investigated migratory cell populations in the IGF2BP1[Formula: see text] mice, using BrdU labeling, and detected fewer mitotically active cells in the cortical plate. Since RNA localization is important for cellular migration and directionality, we investigated the regulation of ß-actin messenger RNA (mRNA), a well-characterized target with established roles in cell motility and development. To aid in our understanding of RBP and target mRNA regulation, we generated mice with endogenously labeled ß-actin mRNA (IGF2BP1[Formula: see text]; ß-actin-MS2[Formula: see text]). Using endogenously labeled ß-actin transcripts, we report IGF2BP1[Formula: see text] neurons have increased transcription rates and total ß-actin protein content. In addition, we found decreased transport and anchoring in knockout neurons. Overall, we present an important model for understanding RBP regulation of target mRNA.


Assuntos
Actinas , Encéfalo , Proteínas de Ligação a RNA , Actinas/genética , Actinas/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Movimento Celular/genética , Camundongos , Camundongos Knockout , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Biochem Biophys Res Commun ; 599: 87-92, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35176630

RESUMO

Fatty acid-binding proteins (FABPs) are lipid chaperones that mediate the intracellular dynamics of the hydrophobic molecules that they physically bind to. FABPs are implicated in sleep and psychiatric disorders, as well as in various cellular processes, such as cell proliferation and survival. FABP is well conserved in insects, and Drosophila has one FABP ortholog, dFabp, in its genome. Although dFabp appears to be evolutionarily conserved in some brain functions, little is known about its development and physiological function. In the present study, we investigated the function of dFabp in Drosophila development and behavior. Knockdown or overexpression of dFabp in the developing brain, wing, and eye resulted in developmental defects, such as decreased survival, altered cell proliferation, and increased apoptosis. Glia-specific knockdown of dFabp affected neuronal development, and neuronal regulation of dFabp affected glial cell proliferation. Moreover, the behavioral phenotypes (circadian rhythm and locomotor activity) of flies with regulated dFabp expression in glia and flies with regulated dFabp expression in neurons were very similar. Collectively, our results suggest that dFabp is involved in the development of various tissues and brain functions to control behavior and is a mediator of neuron-glia interactions in the Drosophila nervous system.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Ligação a Ácido Graxo/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrião não Mamífero/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Asas de Animais/crescimento & desenvolvimento
13.
Science ; 375(6582): eabe8244, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175820

RESUMO

Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.


Assuntos
Disruptores Endócrinos/toxicidade , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Efeitos Tardios da Exposição Pré-Natal , Transcriptoma/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Pré-Escolar , Estrogênios/metabolismo , Feminino , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Locomoção/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/genética , Organoides , Fenóis/análise , Fenóis/toxicidade , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Gravidez , Medição de Risco , Hormônios Tireóideos/metabolismo , Xenopus laevis , Peixe-Zebra
14.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165149

RESUMO

The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene-neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene-neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.


Assuntos
Encéfalo/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/metabolismo , Simulação por Computador , Camundongos , Modelos Biológicos
15.
Science ; 375(6581): 681-686, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143307

RESUMO

Spatial omics emerged as a new frontier of biological and biomedical research. Here, we present spatial-CUT&Tag for spatially resolved genome-wide profiling of histone modifications by combining in situ CUT&Tag chemistry, microfluidic deterministic barcoding, and next-generation sequencing. Spatially resolved chromatin states in mouse embryos revealed tissue-type-specific epigenetic regulations in concordance with ENCODE references and provide spatial information at tissue scale. Spatial-CUT&Tag revealed epigenetic control of the cortical layer development and spatial patterning of cell types determined by histone modification in mouse brain. Single-cell epigenomes can be derived in situ by identifying 20-micrometer pixels containing only one nucleus using immunofluorescence imaging. Spatial chromatin modification profiling in tissue may offer new opportunities to study epigenetic regulation, cell function, and fate decision in normal physiology and pathogenesis.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/metabolismo , Epigênese Genética , Código das Histonas , Histonas/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Epigenoma , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Microfluídica , Neurônios/citologia , Análise de Célula Única
16.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215978

RESUMO

Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.


Assuntos
Encéfalo/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Encéfalo/embriologia , Encéfalo/virologia , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Microcefalia/patologia , Microcefalia/virologia , Neurônios/patologia , Neurônios/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-vav/metabolismo , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Nat Commun ; 13(1): 16, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013230

RESUMO

Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors.


Assuntos
Proliferação de Células , Microcefalia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Vesículas Transportadoras , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Megalencefalia/etiologia , Megalencefalia/metabolismo , Megalencefalia/patologia , Camundongos , Microcefalia/etiologia , Microcefalia/metabolismo , Microcefalia/patologia , Malformações do Sistema Nervoso/etiologia , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Neuroglia/metabolismo , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/patologia
18.
Elife ; 112022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089129

RESUMO

Advancing age causes reduced hippocampal neurogenesis, associated with age-related cognitive decline. The spatial relationship of age-induced alterations in neural stem cells (NSCs) and surrounding cells within the hippocampal niche remains poorly understood due to limitations of antibody-based cellular phenotyping. We established iterative indirect immunofluorescence imaging (4i) in tissue sections, allowing for simultaneous detection of 18 proteins to characterize NSCs and surrounding cells in 2-, 6-, and 12-month-old mice. We show that reorganization of the dentate gyrus (DG) niche already occurs in middle-aged mice, paralleling the decline in neurogenesis. 4i-based tissue analysis of the DG identifies changes in cell-type contributions to the blood-brain barrier and microenvironments surrounding NSCs to play a pivotal role to preserve neurogenic permissiveness. The data provided represent a resource to characterize the principles causing alterations of stem cell-associated plasticity within the aging DG and provide a blueprint to analyze somatic stem cell niches across lifespan in complex tissues.


Assuntos
Envelhecimento , Giro Denteado/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Barreira Hematoencefálica , Encéfalo/embriologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/embriologia , Giro Denteado/metabolismo , Feminino , Imunofluorescência , Células-Tronco Embrionárias Humanas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Organoides , Proteínas/análise , Nicho de Células-Tronco
19.
Biochem Biophys Res Commun ; 594: 139-145, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35085890

RESUMO

Lead is a highly toxic metal that displays developmental neurotoxicity. Ambra1 plays a crucial role in embryonic neural development. At present, the role of Ambra1 in lead-induced developmental neurotoxicity remains unknown. In this study, we investigated the mechanism of Ambra1 concerning its role in lead-induced neurotoxicity. Zebrafish (Danio rerio) embryos were exposed to 0.1, 1, or 10 µM Pb until 5 days post-fertilization, and their locomotor activity was significantly impaired by the 10 µM treatment. Meanwhile, Pb reduced the expression of ambra1a and ambra1b in the brain at 48 and 72 h post-fertilization. Overexpression of ambra1a or ambra1b reversed Pb-induced alterations in locomotor activity, and decreased the apoptotic cell numbers in the brains of Pb-treated zebrafish. Our data reveal a novel protective role of Ambra1 against Pb-induced neural damage in the developing zebrafish.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Lesões Encefálicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Chumbo , Movimento/efeitos dos fármacos , Proteínas de Peixe-Zebra/fisiologia , Animais , Apoptose , Relação Dose-Resposta a Droga , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Inativação Gênica , Hibridização In Situ , Larva , Sistema Nervoso , Neurogênese , Síndromes Neurotóxicas/metabolismo , Neurotoxinas , Peixe-Zebra
20.
BMC Med Imaging ; 22(1): 11, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057733

RESUMO

BACKGROUND: Faster and motion robust magnetic resonance imaging (MRI) sequences are desirable in fetal brain MRI. T1-weighted images are essential for evaluating fetal brain development. We optimized the radial volumetric interpolated breath-hold examination (VIBE) sequence for qualitative T1-weighted images of the fetal brain with improved image contrast and reduced motion sensitivity. MATERIALS AND METHODS: This was an institutional review board-approved prospective study. Thirty-five pregnant subjects underwent fetal brain scan at 3 Tesla MRI. T1-weighted images were acquired using a 3D radial VIBE sequence with flip angles of 6º, 9º, 12º, and 15º. T1-weighted images of Cartesian VIBE sequence were acquired in three of the subjects. Qualitative assessments including image quality and motion artifact severity were evaluated. The image contrast ratio between gray and white matter were measured. Interobserver reliability and intraobserver repeatability were assessed using intraclass correlation coefficient (ICC). RESULTS: Interobserver reliability and intraobserver repeatability universally revealed almost perfect agreement (ICC > 0.800). Significant differences in image quality were detected in basal ganglia (P = 0.023), central sulcus (P = 0.028), myelination (P = 0.007) and gray matter (P = 0.023) among radial VIBE with flip angles 6º, 9º, 12º, 15º. Image quality at the 9º flip angle in radial VIBE was generally better than flip angle of 15º. Radial VIBE sequence with 9º flip angle of gray matter was significantly different by gestational age (GA) before and after 28 weeks (P = 0.036). Quantified image contrast was significantly different among different flip angles, consistent with qualitative analysis of image quality. CONCLUSIONS: Three-dimensional radial VIBE with 9º flip angle provides optimal, stable T1-weighted images of the fetal brain. Fetal brain structure and development can be evaluated using high-quality images obtained using this angle. However, different scanners will achieve different TRs and so the FA should be re-optimized each time a new protocol is employed.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Desenvolvimento Fetal , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Artefatos , Meios de Contraste , Feminino , Idade Gestacional , Humanos , Gravidez , Estudos Prospectivos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...